题目内容
【题目】在平面直角坐标系中,点A的坐标为(5,0),点C的坐标为(0,4),四边形ABCO为矩形,点P为线段BC上的一动点,若△POA为等腰三角形,且点P在双曲线y=上,则k值可以是_____.
【答案】10或12或8.
【解析】
当PA=PO时,根据P在OA的垂直平分线上,得到P的坐标;当OP=OA=5时,由勾股定理求出CP即可;当AP=AO=5时,同理求出BP、CP,即可得出P的坐标,然后把P的坐标代入线y=,即可求得k的值.
∵点A的坐标为(5,0),点C的坐标为(0,4),
∴当PA=PO时,P在OA的垂直平分线上,P的坐标是(2.5,4);
当OP=OA=5时,由勾股定理得:CP==3,P的坐标是(3,4);
当AP=AO=5时,同理BP=3,CP=5﹣3=2,P的坐标是(2,4).
∵点P在双曲线y=上,
∴k=2.5×4=10或k=3×4=12或k=2×4=8,
故答案为10或12或8.
【题目】如图,Rt△ABC中,∠C=90°,P是CB边上一动点,连接AP,作PQ⊥AP交AB于Q.已知AC=3cm,BC=6cm,设PC的长度为xcm,BQ的长度为ycm.
小青同学根据学习函数的经验对函数y随自变量x的变化而变化的规律进行了探究.
下面是小青同学的探究过程,请补充完整:
(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y的几组对应值;
x/cm | 0 | 0.5 | 1.0 | 1.5 | 2.0 | 2.5 | 3 | 3.5 | 4 | 4.5 | 5 | 6 |
y/cm | 0 | 1.56 | 2.24 | 2.51 | m | 2.45 | 2.24 | 1.96 | 1.63 | 1.26 | 0.86 | 0 |
(说明:补全表格时,相关数据保留一位小数)
m的值约为多少cm;
(2)在平面直角坐标系中,描出以补全后的表格中各组数值所对应的点(x,y),画出该函数的图象;
(3)结合画出的函数图象,解决问题:
①当y>2时,写出对应的x的取值范围;
②若点P不与B,C两点重合,是否存在点P,使得BQ=BP?