题目内容
【题目】已知:如图,四边形ABCD是矩形,过点D作DF∥AC交BA的延长线于点F.
(1)求证:四边形ACDF是平行四边形;
(2)若AB=3,DF=5,求△AEC的面积.
【答案】(1)见解析;(2)3
【解析】
(1)根据矩形ABCD的性质得出DC∥BF,又由DF∥AC即可得出四边形ACDF是平行四边形;
(2)根据(1)中的证明可得AC=DF,AE=ED,利用勾股定理解出BC,从而得出AE,再代入三角形面积公式求出即可.
(1)证明:∵四边形ABCD是矩形,
∴DC∥BF,
∵DF∥AC,
∴四边形ACDF是平行四边形;
(2)解:∵四边形ABCD是矩形,
∴CD=AB=3,∠B=90°,
由(1)得:四边形ACDF是平行四边形,
∴AC=DF=5,AE=ED=AD,
∴BC=AD=,
∴AE=×4=2,
∴S△AEC=AECD=×2×3=3.
练习册系列答案
相关题目