题目内容
【题目】如图所示,△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF=BD,连接BF.
(1)求证:D是BC的中点;
(2)若AB=AC,试判断四边形AFBD的形状,并证明你的结论.
【答案】(1)见解析;(2)若AB=AC,则四边形AFBD是矩形.理由见解析
【解析】
(1)先说明∠AFE=∠DCE,再证明△AEF和△DEC全等,最后根据全等三角形的性质和等量关系即可证明;
(2)由(1)可得AF平行且等于BD,即四边形AFBD是平行四边形;再利用等腰三角形三线合一,可得AD⊥BC,即∠ADB=90°,即可证明四边形AFBD是矩形.
(1)证明:∵AF∥BC,
∴∠AFE=∠DCE,
∵点E为AD的中点,
∴AE=DE,
在△AEF和△DEC中,
,
∴△AEF≌△DEC(AAS),
∴AF=CD,
∵AF=BD,
∴CD=BD,
∴D是BC的中点;
(2)解:若AB=AC,则四边形AFBD是矩形.理由如下:
∵△AEF≌△DEC,
∴AF=CD,
∵AF=BD,
∴CD=BD;
∵AF∥BD,AF=BD,
∴四边形AFBD是平行四边形,
∵AB=AC,BD=CD,
∴∠ADB=90°,
∴平行四边形AFBD是矩形.
练习册系列答案
相关题目