题目内容

【题目】已知点Pmn)是反比例函数yx0)的图象上的一动点,PAx轴,PBy轴,分别交反比例函数yx0)的图象于点AB,点C是直线y2x上的一点.

1)点A的坐标为(      ),点B的坐标为(      );(用含m的代数式表示)

2)在点P运动的过程中,连接AB,证明:PAB的面积是一个定值,并求出这个定值;

3)在点P运动的过程中,以点PABC为顶点的四边形能否为平行四边形?若能,求出此时m的值;若不能,请说明理由.

【答案】1;(2;(3m31

【解析】

(1)将点P(mn)代入反比例函数y=(x0),用m表示出n即可表示出点P的坐标,然后根据PAx轴,得到A点的纵坐标为,然后将点A的纵坐标带人反比例函数的解析式y=(x0)即可得到点A的坐标,同理得到点B的坐标;

(2)根据PA=m-PB==,利用SPAB=PAPB即可得到答案;

(3)分三种情况分别画出图形,结合平行四边的性质进行讨论即可.

(1)∵点P(mn)是反比例函数y(x0)图象上的动点,

n

∴点P(m);

PAx轴,

A点的纵坐标为

将点A的纵坐标代入反比例函数的解析式y(x0)得:x

A(),同理可得:B(m);

(2)∵PAmPB

SPABPAPB××

(3)①若四边形PBAC为平行四边形,则有ACy轴,

C点横坐标为

代入y2xC(m),

此时ACmPB

ACPB,得:m

解得:m3m=﹣3(舍去),

m3时,四边形PBAC为平行四边形.

②若四边形PABC为平行四边形,则有BCx轴,

C点纵坐标为

y代入y2xC(),

此时BCm

BCPA,得m

解得:m1m=﹣1(舍去);

③若PACB为平行四边形,则有ACBPy轴,

∴点C(),

代入y2x,得

解得mm=﹣(舍去),

综上:m31时,以点PABC为顶点的四边形为平行四边形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网