题目内容
【题目】在△ABC中,AB=AC,BD=CD,∠BAD=40°,AD=AE.求∠CDE的度数.
【答案】解:∵AB=AC,
∴△ABC为等腰三角形,
∵AD=AE,
∴△ADE为等腰三角形,
∵∠BAD=40°,
∴∠DAE=40°,
∴∠ADE= (180°﹣∠DAE)= (180°﹣40°)=70°,
又∵△ABC为等腰三角形,BD=CD,
∴AD⊥CD(三线合一),
∴∠CDE=90°﹣∠ADE=90°﹣70°=20°.
故答案为:20°
【解析】首先得到△ABC,△ADE均为等腰三角形,再根据等腰三角形的性质求解.
【考点精析】通过灵活运用三角形的内角和外角,掌握三角形的三个内角中,只可能有一个内角是直角或钝角;直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于任何一个和它不相邻的内角即可以解答此题.
【题目】如果一个多边形的各边都相等,且各内角也都相等,那么这个多边形就叫做正多边形.如图,就是一组正多边形,观察每个正多边形中∠α的变化情况:
(1)将下面的表格补充完整:
(2)根据规律,是否存在一个正多边形,其中的∠α=21°?若存在,请求出n的值,若不存在,请说明理由.
正多边形边数 | 3 | 4 | 5 | 6 | … | n |
∠α的度数 | 60° | … |
【题目】问题情景:
如图,在直角坐标系xOy中,点A、B为二次函数y=ax2(a>0)图象上的两点,且点A、B的横坐标分别为m、n(m>n>0),连接OA、AB、OB.设△AOB的面积为S时,解答下列问题:
探究:当a=1时,
mn | mn | S | |
m=3,n=1 | 3 | 2 | |
m=5,n=2 | 10 | 3 |
当a=2时,
2mn | mn | S | |
m=3,n=1 | 6 | 2 | |
m=5,n=2 | 20 | 3 |
归纳证明:
对任意m、n(m>n>0),猜想S=_________________ (用a,m,n表示),并证明你的猜想.
拓展应用:
若点A、B的横坐标分别为m、n(m>0>n),其它条件不变时,△AOB的面积S=____ (用a, m,n表示).