题目内容
【题目】如图,在Rt△ABC中,∠C=90°,以A为圆心,以任意长为半径画弧,分别交AC、AB于点M、N,再分别以点M、N为圆心,以一个定长为半径画弧,两弧交于点P,作射线AP交BC于点D.若AC=8,BC=6,则CD的长为( )
A.B.
C.
D.
【答案】B
【解析】
过点D作DE⊥AB于点E,由作图方法可知AP是∠BAC的平分线;由角平分线的性质定理可得CD=DE;由勾股定理求得AB的长;判定Rt△ADC≌Rt△ADE(HL);设CD=DE=x,在Rt△DEB中,由勾股定理求得x的值即可.
解:过点D作DE⊥AB于点E,如图所示:
∵∠C=90°,由作图方法可知AP是∠BAC的平分线,
∴CD=DE,设CD=DE=x,
在Rt△ABC中,
∵AC=8,BC=6,
∴AB=10.
∵∠C=∠AED=90°,AD=AD,DC=DE,
∴Rt△ADC≌Rt△ADE(HL),
∴AC=AE=8,
∴EB=2,
在Rt△DEB中,
∵BD2=DE2+BE2,
∴(6﹣x)2=x2+22,
解得:x=.
故选:B.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目