题目内容

【题目】如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连结AC,过 上一点E作EG∥AC交CD的延长线于点G,连结AE交CD于点F,且EG=FG,连结CE.
(1)求证:△ECF∽△GCE;
(2)求证:EG是⊙O的切线;
(3)延长AB交GE的延长线于点M,若tanG= ,AH=3 ,求EM的值.

【答案】
(1)证明:如图1中,

∵AC∥EG,

∴∠G=∠ACG,

∵AB⊥CD,

=

∴∠CEF=∠ACD,

∴∠G=∠CEF,∵∠ECF=∠ECG,

∴△ECF∽△GCE


(2)证明:如图2中,连接OE,

∵GF=GE,

∴∠GFE=∠GEF=∠AFH,

∵OA=OE,

∴∠OAE=∠OEA,

∵∠AFH+∠FAH=90°,

∴∠GEF+∠AEO=90°,

∴∠GEO=90°,

∴GE⊥OE,

∴EG是⊙O的切线


(3)解:如图3中,连接OC.设⊙O的半径为r.

在Rt△AHC中,tan∠ACH=tan∠G= =

∵AH=3

∴HC=4

在Rt△HOC中,∵OC=r,OH=r﹣3 ,HC=4

∴(r﹣3 2+(4 2=r2

∴r=

∵GM∥AC,

∴∠CAH=∠M,∵∠OEM=∠AHC,

∴△AHC∽△MEO,

=

=

∴EM=


【解析】(1)由AC∥EG,推出∠G=∠ACG,由AB⊥CD推出 = ,推出∠CEF=∠ACD,推出∠G=∠CEF,由此即可证明;(2)欲证明EG是⊙O的切线只要证明EG⊥OE即可;(3)连接OC.设⊙O的半径为r.在Rt△OCH中,利用勾股定理求出r,证明△AHC∽△MEO,可得 = ,由此即可解决问题;

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网