题目内容

【题目】已知抛物线C1:y=ax2﹣4ax﹣5(a>0).
(1)当a=1时,求抛物线与x轴的交点坐标及对称轴;
(2)①试说明无论a为何值,抛物线C1一定经过两个定点,并求出这两个定点的坐标;②将抛物线C1沿这两个定点所在直线翻折,得到抛物线C2 , 直接写出C2的表达式;
(3)若(2)中抛物线C2的顶点到x轴的距离为2,求a的值.

【答案】
(1)解:当a=1时,抛物线解析式为y=x2﹣4x﹣5=(x﹣2)2﹣9,

∴对称轴为y=2;

∴当y=0时,x﹣2=3或﹣3,即x=﹣1或5;

∴抛物线与x轴的交点坐标为(﹣1,0)或(5,0)


(2)解:①抛物线C1解析式为:y=ax2﹣4ax﹣5,

整理得:y=ax(x﹣4)﹣5;

∵当ax(x﹣4)=0时,y恒定为﹣5;

∴抛物线C1一定经过两个定点(0,﹣5),(4,﹣5);

②这两个点连线为y=﹣5;

将抛物线C1沿y=﹣5翻折,得到抛物线C2,开口方向变了,但是对称轴没变;

∴抛物线C2解析式为:y=﹣ax2+4ax﹣5


(3)解:抛物线C2的顶点到x轴的距离为2,

则x=2时,y=2或者﹣2;

当y=2时,2=﹣4a+8a﹣5,解得,a=

当y=﹣2时,﹣2=﹣4a+8a﹣5,解得,a=

∴a=


【解析】(1)将a=1代入解析式,即可求得抛物线与x轴交点;(2)①化简抛物线解析式,即可求得两个点定点的横坐标,即可解题;②根据抛物线翻折理论即可解题;(3)根据(2)中抛物线C2解析式,分类讨论y=2或﹣2,即可解题;
【考点精析】关于本题考查的二次函数图象的平移和抛物线与坐标轴的交点,需要了解平移步骤:(1)配方 y=a(x-h)2+k,确定顶点(h,k)(2)对x轴左加右减;对y轴上加下减;一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网