题目内容
【题目】如图,海中两个灯塔A,B,其中B位于A的正东方向上,渔船跟踪鱼群由西向东航行,在点C处测得灯塔A在西北方向上,灯塔B在北偏东30°方向上,渔船不改变航向继续向东航行30海里到达点D,这时测得灯塔A在北偏西60°方向上,求灯塔A,B间的距离.(计算结果用根号表示,不取近似值)
【答案】灯塔A、B间的距离为(20+30)海里.
【解析】试题分析:过点A作AF⊥CD,垂足为F,过点D作DE⊥CD,可得出∠FCA=∠ACN=45°,∠NCB=30°,∠ADE=60°,则∠FAD=60°,∠FAC=∠FCA=45°,∠ADF=30°,从而AF=FC=AN=NC,设AF=FC=x,则tan30°=,解得x=,由tan30°=,得到,解得:BN=,由AB=AN+BN,即可得出结论.
试题解析:过点A作AF⊥CD,垂足为F,过点D作DE⊥CD,如图所示:由题意可得出:∠FCA=∠ACN=45°,∠NCB=30°,∠ADE=60°,则∠FAD=60°,∠FAC=∠FCA=45°,∠ADF=30°,∴AF=FC=AN=NC,设AF=FC=x,∴tan30°=,解得:x=,∵tan30°=,∴,解得:BN=,∴AB=AN+BN==.
答:灯塔A、B间的距离为()海里.
练习册系列答案
相关题目