题目内容
【题目】已知:如图,在△ABC中,AB=BC=10,以AB为直径作⊙O分别交AC,BC于点D,E,连接DE和DB,过点E作EF⊥AB,垂足为F,交BD于点P.
(1)求证:AD=DE;
(2)若CE=2,求线段CD的长;
(3)在(2)的条件下,求△DPE的面积.
【答案】
(1)解:∵AB是⊙O的直径,
∴∠ADB=90°,即BD⊥AC
∵AB=BC,
∴BD是等腰△ABC中线,
∴AD=DE;
(2)解:∵四边形ABED内接于⊙O,∴∠CED=∠CAB,
∵∠C=∠C,∴△CED∽△CAB,∴ ,
∵AB=BC=10,CE=2,D是AC的中点,
∴CD= ;
(3)解:延长EF交⊙O于M,
在Rt△ABD中,AD= ,AB=10,
∴BD=3 ,
∵EM⊥AB,AB是⊙O的直径,
∴ ,
∴∠BEP=∠EDB,
∴△BPE∽△BED,
∴ ,
∴BP= ,
∴DP=BD-BP= ,
∴S△DPE:S△BPE=DP:BP=13:32,
∵S△BCD= × ×3 =15,S△BDE:S△BCD=BE:BC=4:5,
∴S△BDE=12,
∴S△DPE= .
【解析】(1)根据已知条件AB是⊙O的直径得出∠ADB=90°,再根据等腰三角形的三线合一的性质即可得出结论。
(2)根据圆内接四边形的性质证得∠CED=∠CAB,再根据相似三角形的判定证出△CED∽△CAB,得出对应边成比例,建立关于CD的方程,即可求出CD的长。
(3)延长EF交⊙O于M,在Rt△ABD中,利用勾股定理求出BD的长,再证明△BPE∽△BED,根据相似三角形的性质得对应边成比例求出BP的长,然后根据等高的三角形的面积之比等于对边之比,再由三角形面积公式即可求解。
练习册系列答案
相关题目