题目内容
【题目】已知点A在函数y1=﹣ (x>0)的图象上,点B在直线y2=kx+1+k(k为常数,且k≥0)上.若A,B两点关于原点对称,则称点A,B为函数y1 , y2图象上的一对“友好点”.请问这两个函数图象上的“友好点”对数的情况为( )
A.有1对或2对
B.只有1对
C.只有2对
D.有2对或3对
【答案】A
【解析】解:设A(a,﹣ ),
由题意知,点A关于原点的对称点B((a,﹣ ),)在直线y2=kx+1+k上,
则 =﹣ak+1+k,
整理,得:ka2﹣(k+1)a+1=0 ①,
即(a﹣1)(ka﹣1)=0,
∴a﹣1=0或ka﹣1=0,
则a=1或ka﹣1=0,
若k=0,则a=1,此时方程①只有1个实数根,即两个函数图象上的“友好点”只有1对;
若k≠0,则a= ,此时方程①有2个实数根,即两个函数图象上的“友好点”有2对,
综上,这两个函数图象上的“友好点”对数情况为1对或2对,
故选:A.
【考点精析】根据题目的已知条件,利用求根公式和关于原点对称的点的坐标的相关知识可以得到问题的答案,需要掌握根的判别式△=b2-4ac,这里可以分为3种情况:1、当△>0时,一元二次方程有2个不相等的实数根2、当△=0时,一元二次方程有2个相同的实数根3、当△<0时,一元二次方程没有实数根;两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P’(-x,-y).
练习册系列答案
相关题目