题目内容
【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:
①b2﹣4ac>0;
②abc>0;
③当x>0时,y随x的增大而增大;
④9a+3b+c<0.
其中,正确结论是 .(请把所有正确结论的序号都填上)
【答案】①②④
【解析】
试题分析:抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
解:①由图知:抛物线与x轴有两个不同的交点,则△=b2﹣4ac>0,故①正确;
②抛物线开口向上,得:a>0;
抛物线的对称轴为x=﹣=1,b=﹣2a,故b<0;
抛物线交y轴于负半轴,得:c<0;
所以abc>0;
故②正确;
③当x>1时,y随x的增大而增大,故③错误;
④根据抛物线的对称轴方程可知:(﹣1,0)关于对称轴的对称点是(3,0);
当x=﹣1时,y<0,所以当x=3时,也有y<0,即9a+3b+c<0;故④正确;
所以这四个结论中①②④正确.
故答案为:①②④.
练习册系列答案
相关题目