题目内容
【题目】如图,在等腰三角形ABC中,AB=AC,∠A=36°,BD、CE分别是∠ABC、∠ACB的平分线,且交于点O,则图中等腰三角形有________
【答案】8个
【解析】
由在△ABC中,AB=AC,∠A=36°,根据等边对等角,即可求得∠ABC与∠ACB的度数,又由BD、CE分别为∠ABC与∠ACB的角平分线,即可求得∠ABD=∠CBD=∠ACE=∠BCE=∠A=36°,然后利用三角形内角和定理与三角形外角的性质,即可求得∠BEO=∠BOE=∠ABC=∠ACB=∠CDO=∠COD=72°,由等角对等边,即可求得答案.
∵在△ABC中,AB=AC,∠A=36°,
∴∠ABC=∠ACB==72°,
∵BD、CE分别为∠ABC与∠ACB的角平分线,
∴∠ABD=∠CBD=∠ACE=∠BCE=∠A=36°,
∴AE=CE,AD=BD,BO=CO,
∴△ABC,△ABD,△ACE,△BOC是等腰三角形,
∵∠BEC=180°∠ABC∠BCE=72°,∠CDB=180°∠BCD∠CBD=72°,∠EOB=∠DOC=∠CBD+∠BCE=72°,
∴∠BEO=∠BOE=∠ABC=∠ACB=∠CDO=∠COD=72°,
∴BE=BO,CO=CD,BC=BD=CO,
∴△BEO,△CDO,△BCD,△CBE是等腰三角形.
∴图中的等腰三角形有8个.
故答案为:8个.
练习册系列答案
相关题目