题目内容
【题目】阅读下面材料:
小明遇到这样一个问题:如图1,△ABC中,AB=AC,点D在BC边上,∠DAB=∠ABD,BE⊥AD,垂足为E,求证:BC=2AE.
小明经探究发现,过点A作AF⊥BC,垂足为F,得到∠AFB=∠BEA,从而可证△ABF≌△BAE(如图2),使问题得到解决.
(1)根据阅读材料回答:△ABF与△BAE全等的条件是 AAS(填“SSS”、“SAS”、“ASA”、“AAS”或“HL”中的一个)
参考小明思考问题的方法,解答下列问题:
(2)如图3,△ABC中,AB=AC,∠BAC=90°,D为BC的中点,E为DC的中点,点F在AC的延长线上,且∠CDF=∠EAC,若CF=2,求AB的长;
(3)如图4,△ABC中,AB=AC,∠BAC=120°,点D、E分别在AB、AC边上,且AD=kDB(其中0<k<),∠AED=∠BCD,求的值(用含k的式子表示).
【答案】(1)AAS;(2)AB=4;(3).
【解析】
试题分析:(1)作AF⊥BC,根据已知条件易得∠AFB=∠BEA,∠DAB=∠ABD,AB=AB,根据AAS可判断出△ABF≌△BAE;(2)连接AD,作CG⊥AF,易得tan∠DAE=,再由tan∠F=tan∠DAE,求出CG,再证△DCG∽△ACE,根据相似三角形的性质即可求出AC;(3)过点D作DG⊥BC,设DG=a,在Rt△ABH,Rt△ADN,Rt△ABH中分别用a,k表示出AB=2a(k+1),BH=a(k+1),BC=2BH=2a(k+1),CG=a(2k+1),DN=ka,最后用△NDE∽△GDC,求出AE,EC即可.
试题解析:证明:(1)如图2,
作AF⊥BC,
∵BE⊥AD,∴∠AFB=∠BEA,
在△ABF和△BAE中,
,
∴△ABF≌△BAE(AAS),
∴BF=AE
∵AB=AC,AF⊥BC,
∴BF=BC,
∴BC=2AE,
故答案为AAS
(2)如图3,
连接AD,作CG⊥AF,
在Rt△ABC中,AB=AC,点D是BC中点,
∴AD=CD,
∵点E是DC中点,
∴DE=CD=AD,
∴tan∠DAE==,
∵AB=AC,∠BAC=90°,点D为BC中点,
∴∠ADC=90°,∠ACB=∠DAC=45°,
∴∠F+∠CDF=∠ACB=45°,
∵∠CDF=∠EAC,
∴∠F+∠EAC=45°,
∵∠DAE+∠EAC=45°,
∴∠F=∠DAE,
∴tan∠F=tan∠DAE=,
∴,
∴CG=×2=1,
∵∠ACG=90°,∠ACB=45°,
∴∠DCG=45°,
∵∠CDF=∠EAC,
∴△DCG∽△ACE,
∴,
∵CD=AC,CE=CD=AC,
∴,
∴AC=4;
∴AB=4;
(3)如图4,
过点D作DG⊥BC,设DG=a,
在Rt△BGD中,∠B=30°,
∴BD=2a,BG=a,
∵AD=kDB,
∴AD=2ka,AB=BD+AD=2a+2ka=2a(k+1),
过点A作AH⊥BC,
在Rt△ABH中,∠B=30°.
∴BH=a(k+1),
∵AB=AC,AH⊥BC,
∴BC=2BH=2a(k+1),
∴CG=BC﹣BG=a(2k+1),
过D作DN⊥AC交CA延长线与N,
∵∠BAC=120°,
∴∠DAN=60°,
∴∠ADN=30°,
∴AN=ka,DN=ka,
∵∠DGC=∠AND=90°,∠AED=∠BCD,
∴△NDE∽△GDC.
∴,
∴,
∴NE=3ak(2k+1),
∴EC=AC﹣AE=AB﹣AE=2a(k+1)﹣2ak(3k+1)=2a(1﹣3k2),
∴.