题目内容

【题目】正方形的边长为4,点在对角线上(可与点重合),,点在正方形的边上.下面四个结论中,

①存在无数个四边形是平行四边形;

②存在无数个四边形是菱形;

③存在无数个四边形是矩形;

④至少存在一个四边形是正方形.

所有正确结论的序号是_______

【答案】①②④

【解析】

根据平行四边形的判定和性质,菱形的判定,矩形的判定,正方形的判定定理即可得到结论.

解:①设正方形的对角线相交于点O,若MN的中点恰好是点O,则经过点O任意一直线PQ,分别与正方形的边AD,BC交于点P,G,通过正方形的性质对称性易得OP=OG,则四边形PMQN是平行四边形,由于PQ的任意性,则存在无数个四边形是平行四边形,故①正确;

②过MN的中点E作垂线,分别与正方形的相邻两边交于P,Q,根据正方形的对称性可得,PE=GE,则四边形是菱形,由于MN的任意性,则存在四边形是菱形;③由①存在由无数个平行四边边形,要是的四边形为正方形则PQ=MN=2=CD,故此时PQ经过正方形对角线的交点,且与正方形的边BC垂直,是唯一的,故不存在无数个四边形是矩形;④由②知存在菱形,故只需满足∠PMQ=90°时,则四边形PMQN时正方形,此时M与点A重合即可,故存在至少存在一个四边形是正方形;

故正确的结论序号是①②④.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网