题目内容
【题目】如图,已知⊙O的直径AB垂直于弦CD于点E,连接CO并延长交AD于点F,且CF⊥AD
(1) 求证:E是OB的中点
(2) 若AB=8,求CD的长
【答案】(1)见解析;(2)4.
【解析】试题分析:(1)要证明:E是OB的中点,只要求证OE=OB=
OC,即证明∠OCE=30°即可.
(2)在直角△OCE中,根据勾股定理就可以解得CE的长,进而求出CD的长.
(1)证明:连接AC,如图
∵直径AB垂直于弦CD于点E,
∴,
∴AC=AD,
∵过圆心O的线CF⊥AD,
∴AF=DF,即CF是AD的中垂线,
∴AC=CD,
∴AC=AD=CD.
即:△ACD是等边三角形,
∴∠FCD=30°,
在Rt△COE中,,
∴,
∴点E为OB的中点;
(2)解:在Rt△OCE中,AB=8,
∴,
又∵BE=OE,
∴OE=2,
∴,
∴.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目