题目内容
【题目】如图,正六边形ABCDEF内接于⊙O,若⊙O的半径为4,则阴影部分的面积等于 .
【答案】π.
【解析】
试题分析:先正确作辅助线,构造扇形和等边三角形、直角三角形,分别求出两个弓形的面积和两个三角形面积,即可求出阴影部分的面积.
解:连接OC、OD、OE,OC交BD于M,OE交DF于N,过O作OZ⊥CD于Z,
∵六边形ABCDEF是正六边形,
∴BC=CD=DE=EF,∠BOC=∠COD=∠DOE=∠EOF=60°,
由垂径定理得:OC⊥BD,OE⊥DF,BM=DM,FN=DN,
∵在Rt△BMO中,OB=4,∠BOM=60°,
∴BM=OB×sin60°=2,OM=OBcos60°=2,
∴BD=2BM=4,
∴△BDO的面积是×BD×OM=×4×2=4,
同理△FDO的面积是4;
∵∠COD=60°,OC=OD=4,
∴△COD是等边三角形,
∴∠OCD=∠ODC=60°,
在Rt△CZO中,OC=4,OZ=OC×sin60°=2,
∴S扇形OCD﹣S△COD=﹣×4×2=π﹣4,
∴阴影部分的面积是:4+4+π﹣4+π﹣4=π,
故答案为:π.
练习册系列答案
相关题目