题目内容

如图,已知AB是圆O的直径,DC是圆O的切线,点C是切点,AD⊥DC垂足为D,且与圆O相交于点E.
(1)求证:∠DAC=∠BAC,
(2)若圆O的直径为5cm,EC=3cm,求AC的长.
分析:(1)连接OC,推出OC⊥DC,求出AD∥OC,得出∠DAC=∠BAC=∠OCA,即可得出答案;
(2)根据∠DAC=∠BAC推出EC=BC=3,在△ACB中根据勾股定理求出AC即可.
解答:(1)证明:连接OC,
∵DC切⊙O于C,
∴OC⊥DC,
∵AD⊥DC,
∴AD∥OC,
∴∠DAC=∠OCA,
∵OA=OC,
∴∠BAC=∠OCA,
∴∠DAC=∠BAC.

(2)解:∵∠DAC=∠BAC,
∴EC=BC=3,
∵AB是直径,
∴∠ACB=90°,
由勾股定理得:AC=
52-32
=4,
答:AC的长是4.
点评:本题考查了勾股定理,平行线性质,切线的性质,圆周角定理等知识点的应用,主要考查学生运用定理进行推理的能力,题目比较典型,难度适中.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网