题目内容
【题目】如图,为线段上一动点(不与点重合),在同侧分别作等边三角形和等边三角形与交于点,与交于点,与交于点,连结.以下结论:①;②;③;④是等边三角形,恒成立的是______.
【答案】①②③④
【解析】
①由△ABC和△CDE都是等边三角形,可知AC=BC,CD=CE,∠ACB=∠DCE=60°,所以∠ACD=∠BCE=120°,所以△ACD≌△BCE(SAS),从而AD=BE,故①正确;②④由△ACD≌△BCE得∠CBE=∠DAC,加之AC=BC,易得∠ACB=∠BCQ=60°,可证△CQB≌△CPA(ASA),从而CP=CQ,再加之∠PCQ=60°,可推出△PCQ为等边三角形,易得∠PQC=60°=∠DCE,根据内错角相等,两直线平行,可知②④正确;③结合△ACD≌△BCE和三角形的外角的性质,可得∠AOB=60°,故③正确.
解:①∵等边△ABC和等边△CDE,
∴AC=BC,CD=CE,∠ACB=∠DCE=60°,
∴∠ACB+∠BCD=∠DCE+∠BCD,即∠ACD=∠BCE,
∵在△ACD与△BCE中,
∴△ACD≌△BCE(SAS),
∴AD=BE,
故①正确;
④②∵△ACD≌△BCE,
∴∠CBE=∠DAC,
∵由∠ACB=∠DCE=60°得∠BCD=60°,
∴∠ACP=∠BCQ,
又∵AC=BC,
∴△CQB≌△CPA(ASA),
∴CP=CQ,
又∵∠PCQ=60°
∴△PCQ为等边三角形,
∴∠PQC=60°,
∴∠PQC=60°=∠DCE
∴PQ∥AE
故②④正确;
③∵△ACD≌△BCE(SAS),
∴∠CAD=∠CBE,
∴∠AOB=∠CAD+∠CEB=∠CBE+∠CEB,
又∵∠ACB=∠CBE+∠CEB=60°,
∴∠AOB=∠ACB=60°,
故③正确.
故答案为:①②③④.
【题目】某篮球队对队员进行定点投篮测试,每人每天投篮10次,现对甲、乙两名队员在五天中进球数(单位:个)进行统计,结果如下:
甲 | 10 | 6 | 10 | 6 | 8 |
乙 | 7 | 9 | 7 | 8 | 9 |
经过计算,甲进球的平均数为8,方差为3.2.
(1)求乙进球的平均数和方差;
(2)如果综合考虑平均成绩和成绩稳定性两方面的因素,从甲、乙两名队员中选出一人去参加定点投篮比赛,应选谁?为什么?