题目内容
【题目】如图,已知∠BAD=∠CAD,则下列条件中不一定能使△ABD≌△ACD的是( )
A.∠B=∠CB.∠BDA=∠CDAC.AB=ACD.BD=CD
【答案】D
【解析】
利用全等三角形判定定理ASA,SAS,AAS对各个选项逐一分析即可得出答案.
A、∵∠BAD=∠CAD,AD为公共边,若∠B=∠C,则△ABD≌△ACD(AAS);
B、∵∠BAD=∠CAD,AD为公共边,若∠BDA=∠CDA,则△ABD≌△ACD(ASA);
C、∵∠BAD=∠CAD,AD为公共边,若AB=AC,则△ABD≌△ACD(SAS);
D、∵∠BAD=∠CAD,AD为公共边,若BD=CD,不符合全等三角形判定定理,不能判定△ABD≌△ACD;
故选:D.
【题目】蔬菜基地种植某种蔬菜,由市场行情分析知,1月份至6月份这种蔬菜的上市时间(月份)与市场售价(元/千克)的关系如下表:
上市时间(月份) | 1 | 2 | 3 | 4 | 5 | 6 |
市场售价(元/千克) | 10.5 | 9 | 7.5 | 6 | 4.5 | 3 |
这种蔬菜每千克的种植成本(元/千克)与上市时间(月份)满足一个函数关系,这个函数的图象是抛物线的一段(如图).
(1)写出上表中表示的市场售价(元/千克)关于上市时间(月份)的函数关系式;
(2)若图中抛物线过点,写出抛物线对应的函数关系式;
(3)由以上信息分析,哪个月上市出售这种蔬菜每千克的收益最大?最大值为多少?(收益=市场售价-种植成本)
【题目】某商场经营某种品牌的玩具,进价是元,根据市场调查:在一段时间内,销售单价是元时,销售量是件,而销售单价每涨元,就会少售出件玩具.
不妨设该种品牌玩具的销售单价为元,请你分别用的代数式来表示销售量件和销售该品牌玩具获得利润元,并把结果填写在表格中:
销售单价(元) | |
销售量(件) | ________ |
销售玩具获得利润(元) | ________ |
在问条件下,若商场获得了元销售利润,求该玩具销售单价应定为多少元.
在问条件下,若玩具厂规定该品牌玩具销售单价不低于元,且商场要完成不少于件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?