题目内容

【题目】已知关于x的一元二次方程(x﹣3)(x﹣4)﹣m2=0.

(1)求证:对任意实数m,方程总有2个不相等的实数根;

(2)若方程的一个根是2,求m的值及方程的另一个根.

【答案】(1)证明见解析;(2)m的值为±,方程的另一个根是5.

【解析】

(1)先把方程化为一般式,利用根的判别式△=b2-4ac证明判断即可;

(2)根据方程的根,利用代入法即可求解m的值,然后还原方程求出另一个解即可.

(1)证明:

∵(x﹣3)(x﹣4)﹣m2=0,

∴x2﹣7x+12﹣m2=0,

∴△=(﹣7)2﹣4(12﹣m2)=1+4m2

∵m2≥0,

∴△>0,

对任意实数m,方程总有2个不相等的实数根;

(2)解:∵方程的一个根是2,

∴4﹣14+12﹣m2=0,解得m=±

原方程为x2﹣7x+10=0,解得x=2x=5,

m的值为±,方程的另一个根是5.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网