题目内容
【题目】已知关于x的一元二次方程(x﹣3)(x﹣4)﹣m2=0.
(1)求证:对任意实数m,方程总有2个不相等的实数根;
(2)若方程的一个根是2,求m的值及方程的另一个根.
【答案】(1)证明见解析;(2)m的值为±,方程的另一个根是5.
【解析】
(1)先把方程化为一般式,利用根的判别式△=b2-4ac证明判断即可;
(2)根据方程的根,利用代入法即可求解m的值,然后还原方程求出另一个解即可.
(1)证明:
∵(x﹣3)(x﹣4)﹣m2=0,
∴x2﹣7x+12﹣m2=0,
∴△=(﹣7)2﹣4(12﹣m2)=1+4m2,
∵m2≥0,
∴△>0,
∴对任意实数m,方程总有2个不相等的实数根;
(2)解:∵方程的一个根是2,
∴4﹣14+12﹣m2=0,解得m=±,
∴原方程为x2﹣7x+10=0,解得x=2或x=5,
即m的值为±,方程的另一个根是5.
练习册系列答案
相关题目