题目内容

【题目】如图,边长一定的正方形ABCD,Q为CD上一个动点,AQ交BD于点M,过M作MN⊥AQ交BC于点N,作NP⊥BD于点P,连接NQ,下列结论:①AM=MN;②MP= BD;③BN+DQ=NQ;④ 为定值.其中一定成立的是 .

【答案】①②③④
【解析】解:如图1所示:

作AU⊥NQ于U,连接AN,AC,

∵∠AMN=∠ABC=90°,

∴A,B,N,M四点共圆,

∴∠NAM=∠DBC=45°,∠ANM=∠ABD=45°,

∴∠ANM=∠NAM=45°,

∴AM=MN,故①正确.

由同角的余角相等知,∠HAM=∠PMN,

在△AHM和△MPN中,

∴△AHM≌△MPN(AAS),

∴MP=AH= AC= BD,故②正确,

∵∠BAN+∠QAD=∠NAQ=45°,

∴△ADQ绕点A顺时针旋转90度至△ABR,使AD和AB重合,连接AN,

则∠RAQ=90°,△ABR≌△ADQ,

∴AR=AQ,∠RAN=90°﹣45°=45°=∠NAM,

在△AQN和△ANR中,

∴△AQN≌△ANR(SAS),

∴NR=NQ,

则BN=NU,DQ=UQ,

∴点U在NQ上,有BN+DQ=QU+UN=NQ,故③正确.

如图2所示,作MS⊥AB,垂足为S,作MW⊥BC,垂足为W,点M是对角线BD上的点,

∴四边形SMWB是正方形,

∴MS=MW=BS=BW,∠SMW=90°,

∴∠AMS=∠NMW,

在△AMS和△NMW中,

∴△AMS≌△NMW(ASA),

∴AS=NW,

∴AB+BN=SB+BW=2BW,

∵BW:BM=1:

= = ,故④正确.

所以答案是:①②③④.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网