题目内容

【题目】情境观察:
(1)如图1,△ABC中,AB=AC,∠BAC=45°,CD⊥AB,AE⊥BC,垂足分别为D、E,CD与AE交于点F. ①写出图1中所有的全等三角形
②线段AF与线段CE的数量关系是
(2)如图2,△ABC中,∠BAC=45°,AB=BC,AD平分∠BAC,AD⊥CD,垂足为D,AD与BC交于点E. 求证:AE=2CD.
(3)如图3,△ABC中,∠BAC=45°,AB=BC,点D在AC上,∠EDC= ∠BAC,DE⊥CE,垂足为E,DE与BC交于点F.求证:DF=2CE. 要求:请你写出辅助线的作法,并在图3中画出辅助线,不需要证明.

【答案】
(1)△ABE≌△ACE,△ADF≌△CDB;AF=2CE 问题探究:
(2)证明:延长AB、CD交于点G,如图2‘所示:

∵AD平分∠BAC,

∴∠CAD=∠GAD,

∵AD⊥CD,

∴∠ADC=∠ADG=90°,

在△ADC和△ADG中,

∴△ADC≌△ADG(ASA),

∴CD=GD,即CG=2CD,

∵∠BAC=45°,AB=BC,

∴∠ABC=90°,

∴∠CBG=90°,

∴∠G+∠BCG=90°,

∵∠G+∠BAE=90°,

∴∠BAE=∠BCG,

在△ABE和△CBG中,

∴△ADC≌△CBG中(ASA),

∴AE=CG=2CD

拓展延伸:


(3)解:作DG⊥BC交CE的延长线于G,

如图3所示.


【解析】情境观察:解:①图1中所有的全等三角形为△ABE≌△ACE,△ADF≌△CDB;所以答案是:△ABE≌△ACE,△ADF≌△CDB②线段AF与线段CE的数量关系是:AF=2CE;所以答案是:AF=2CE. 情境观察:①由全等三角形的判定方法容易得出结果;②由全等三角形的性质即可得出结论;问题探究:延长AB、CD交于点G,由ASA证明△ADC≌△ADG,得出对应边相等CD=GD,即CG=2CD,证出∠BAE=∠BCG,由ASA证明△ADC≌△CBG,得出AE=CG=2CD即可.拓展延伸:作DG⊥BC交CE的延长线于G,同上证明三角形全等,得出DF=CG即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网