题目内容
【题目】如图,已知在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD,CB相交于点H,E,AH=2CH.
(1)求sin B的值;
(2)如果CD=,求BE的值.
【答案】(1);(2)3.
【解析】
试题分析:(1)根据∠ACB=90°,CD是斜边AB上的中线,可得出CD=BD,则∠B=∠BCD,再由AE⊥CD,可证明∠B=∠CAH,由AH=2CH,可得出CH:AC=1:,即可得出sinB的值;
(2)根据sinB的值,可得出AC:AB=1:,再由AB=2,得AC=2,则CE=1,从而得出BE.
试题解析:(1)∵∠ACB=90°,CD是斜边AB上的中线,
∴CD=BD,
∴∠B=∠BCD,
∵AE⊥CD,
∴∠CAH+∠ACH=90°,
又∠ACB=90°
∴∠BCD+∠ACH=90°
∴∠B=∠BCD=∠CAH,即∠B=∠CAH,
∵AH=2CH,
∴由勾股定理得AC=CH,
∴CH:AC=1:,
∴sinB=;
(2)∵sinB=,
∴AC:AB=1:,
∴AC=2.
∵∠CAH=∠B,
∴sin∠CAH=sinB=,
设CE=x(x>0),则AE=x,则x2+22=(x)2,
∴CE=x=1,AC=2,
在Rt△ABC中,AC2+BC2=AB2,
∵AB=2CD=2,
∴BC=4,
∴BE=BC-CE=3.
练习册系列答案
相关题目