题目内容
如图, 等腰梯形两底之差等于一腰的长,那么这个梯形较小内角的度数是
A. | B. | C. | D. |
B
分析:过点D作DE∥AB,交BC于点E,根据已知及等腰梯形的性质得到△DEC是等边三角形,从而得到梯形的一内角为60°.
解答:解:如图,过点D作DE∥AB,交BC于点E.
由已知知等腰梯形两底之差等于一腰的长,
故可得DC=DE,又知AB=DE,
即△DEC是等边三角形,所以∠C=60°,
故这个梯形较小内角的度数是60°,
故选B.
解答:解:如图,过点D作DE∥AB,交BC于点E.
由已知知等腰梯形两底之差等于一腰的长,
故可得DC=DE,又知AB=DE,
即△DEC是等边三角形,所以∠C=60°,
故这个梯形较小内角的度数是60°,
故选B.
练习册系列答案
相关题目