题目内容
【题目】如图,某水平地面上建筑物的高度为AB,在点D和点F处分别竖立高是2米的标杆CD和EF,两标杆相隔52米,并且建筑物AB,标杆CD和EF在同一竖直平面内,从标杆CD后退2米到点G处,在G处测得建筑物顶端A和标杆顶端C在同一条直线上;从标杆FE后退4米到点H处,在H处测得建筑物顶端A和标杆顶端E在同一条直线上,求建筑物的高.
【答案】解:∵AB⊥BH,CD⊥BH,EF⊥BH,
∴AB∥CD∥EF,
∴△CDG∽△ABG,△EFH∽△ABH,
∴ = , = ,
∵CD=DG=EF=2m,DF=52m,FH=4m,
∴ = ,
= ,
∴ = ,
解得BD=52,
∴ = ,
解得AB=54.
答:建筑物的高为54米
【解析】首先由AB∥CD∥EF可得出△CDG∽△ABG,△EFH∽△ABH,再根据相似三角形的对应边成比例列出比例式求解即可.
【考点精析】本题主要考查了相似三角形的应用的相关知识点,需要掌握测高:测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长成比例”的原理解决;测距:测量不能到达两点间的举例,常构造相似三角形求解才能正确解答此题.
练习册系列答案
相关题目