题目内容
【题目】如图所示,A、B两地相距50千米,甲于某日下午1时骑自行车从A地出发驶往B地,乙也于同日下午骑摩托车按相同路线从A地出发驶往B地,如图所示,图中的折线PQR和线段MN分别表示甲、乙所行驶的路程S和时间t的关系.象回答下列问题:
(1)甲和乙哪一个出发的更早?早出发多长时间?
(2)甲和乙哪一个早到达B城?早多长时间?
(3)乙骑摩托车的速度和甲骑自行车在全程的平均速度分别是多少?
(4)请你根据图象上的数据,求出乙出发后多长时间追上甲?
【答案】(1)甲更早,早出发1 h;(2)乙更早,早到2 h;(3)甲的平均速度12.5km/h, 乙的平均速度是50km/h;(4) 乙出发0.5 h就追上甲
【解析】
(1)(2)读图可知;
(3)从图中得:甲和乙所走的路程都是50千米,甲一共用了4小时,乙一共用了1小时,根据速度=,代入计算得出;
(4)从图中得:甲在走完全程时,前1小时速度为20千米/小时,从第2小时开始,速度为=10千米/小时,因此设乙出发x小时就追上甲,则从图中看,是在甲速度为10千米/小时时与乙相遇,所以甲的路程为20+10x,乙的路程为50x,列方程解出即可.
(1)甲下午1时出发,乙下午2时出发,所以甲更早,早出发1小时;
(2)甲5时到达,乙3时到达,所以乙更早,早到2小时;
(3)乙的速度==50(千米/时),甲的平均速度==12.5(千米/时);
(4)设乙出发x小时就追上甲,根据题意得:50x=20+10x,x=0.5.
答:乙出发0.5小时就追上甲.
【题目】)如图,在△ABC中,D是BC边上的中点,F、E分别是AD及其延长线上的点,CF∥BE。
(1)试说明△BDE≌△CDF
(2)请连接BF、CE,试判断四边形BECF是何种特殊四边形,并说明理由.
【题目】某市篮球队到市一中选拔一名队员.教练对王亮和李刚两名同学进行5次3分球投篮测试,每人每次投10个球,图记录的是这两名同学5次投篮所投中的个数.
(1)请你根据图中的数据,填写下表;
姓名 | 平均数 | 众数 | 方差 |
王亮 | 7 | ||
李刚 | 7 | 2.8 |
(2)你认为谁的成绩比较稳定,为什么?
(3)若你是教练,你打算选谁?简要说明理由.