题目内容
【题目】如图,已知抛物线y=﹣+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知B点的坐标为B(8,0).
(1)求抛物线的解析式及其对称轴方程.
(2)连接AC、BC,试判断△AOC与△COB是否相似?并说明理由.
(3)在抛物线上BC之间是否存在一点D,使得△DBC的面积最大?若存在请求出点D的坐标和△DBC的面积;若不存在,请说明理由.
【答案】(1) 抛物线的解析式为y═;对称轴方程为x=3;(2)相似,理由见解析;(3)当t=4时,△DBC的最大面积为16,此时D点坐标为(4,6)
【解析】
(1)直接把点B(8,0)代入抛物线y=﹣+bx+4,求出b的值即可得出抛物线的解析式,进而可得出其对称轴方程;
(2)求出A点坐标,再由锐角三角函数的定义得出tan∠ACO=tan∠CBO,故∠ACO=∠CBO,由此可得出结论;
(3)求出BC解析式,将S△BCD转化为DHOB,设D(t,﹣t2+t+4),H(t,﹣t+4),面积可转化为S△BCD=﹣(t﹣4)2+16,△DBC的最大面积为16,此时D点坐标为(4,6).
(1)∵B点的坐标为B(8,0),∴﹣16+8b+4=0,解得:b=,∴抛物线的解析式为y═﹣+x+4,对称轴方程为x=﹣=3;
(2)由(1)知,抛物线的对称轴方程为x=3,B(8,0),∴A(﹣2,0),C(0,4),∴OA=2,OC=4,OB=8,∴tan∠ACO=tan∠CBO=,∴∠ACO=∠CBO.
∵∠AOC=∠COB=90°,∴△AOC∽△COB.
(3)设BC解析式为y=kx+b,把(8,0),(0,4)分别代入解析式得:,解得:,∴y=﹣x+4.
作DH⊥x轴
当t=4时,△DBC的最大面积为16,此时D点坐标为(4,6).
【题目】为了贯彻落实市委政府提出的“精准扶贫”精神,某校特制定了一系列帮扶A、B两贫困村的计划,现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如表:
车型 | 目的地 | |
A村(元/辆) | B村(元/辆) | |
大货车 | ||
800 | 900 | |
小货车 | 400 | 600 |
(1)求这15辆车中大小货车各多少辆?
(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.
(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.
【题目】小明的爸爸开车带着小明在公路上匀速行驶,小明每隔一段时间看到的里程碑上的数如下:
时刻 | 12:00 | 13:00 | 14:30 |
碑上的数 | 是一个两位数,数字之和是6 | 是一个两位数,十位与个位数字与12:00时所看到的正好颠倒了 | 比12:00时看到的两位数中间多了个0 |
则12:00时看到的两位数是多少?设12:00时看到的两位数的个位数为y,十位数为x,列出的二元一次方程组为_____.