题目内容
【题目】如图1,抛物线与x轴交于A,B两点(点A在点B右侧),与y轴交于点C,点D是抛物线的顶点.
(1)如图1,连接AC、BC,若点P是直线AC上方抛物线上一动点,过点P作PE//BC交于点E,作PQ//y轴交AC于点Q,当△PQE周长最大时,若点M在y轴上,点N在x轴上,求PM+MNAN的最小值;
(2)如图2,点G为x轴正半轴上一点,且OG=OC,连接CG,过点作于点,将绕点顺时针旋转,记旋转中的为△,在旋转过程中,直线,分别与直线交于点,,△能否成为等腰三角形?若能请直接写出所有满足条件的的值;若不能,请说明理由.
【答案】(1)PM+MN﹣AN的最小值是;(2)满足条件的旋转角α为15°或37.5°或60°或127.5°.
【解析】
(1)构建二次函数,求出点P坐标,如图2中,作sin∠OAF=, 作PN⊥AF,则有PM+MN≥PN,NH=AN,可知PM+MN-ANAN的最小值即为PH的长,根据同角的三角函数可得PH的长;
(2)分四种情形分别画出图形分别求解即可解决问题;
解:(1)如图1,对于抛物线,令y=0,得到x=6或-2,
∴A(6,0),B(-2,0),
当x=0时,y=2,
∴C(0,2),
Rt△AOC中,OC=2, OA=6,
∴AC=4,
∴∠ACO=60°,同理得∠BCO=30°
∴∠ACB=30°+60°=90°,
∵PE∥BC,
∴∠PEQ=90°,
∵PQ∥y轴,
∴∠ACO=∠PQC=60°,
∴当PQ最大时,△PQE周长最大,
设,则,
当x=3时,PQ最长,此时,△PQE周长最大,
如图2,在y轴上取点,得,
,作PH⊥AF,交AF于H,交y轴于M,交x轴于N,AF交PQ于K,
则PM+MN-ANAN的最小值即为PH的长,
∵A(6,0),,
易得直线AF的解析式为,
当x=3时,
综上,PM+MN-ANAN的最小值是.
(2)如图3中,当MN=MG′时,设OA交G′N于L,
∵∠MG′N=75°,
∴∠MNG′=∠MG′N=75°,
∴∠NLA=75°-30°=45°,
∵∠OLG'=∠NLA=45°,∠OG′L=45°+75°=120°,
∴∠AOG′=180°-120°-45°=15°,
∴旋转角为15°.
如图4中,当G′M=G′N时,设OA交C′G′于L.
∵∠MG′N=75°,
∴∠G′MN=(180°-75°)=52.5°,
∴∠OLG′=∠ALM=180°-30°-52.5°=97.5°,
∴∠AOG′=180°-97.5°-45°=37.5°,
∴旋转角为37.5°.
如图5中,当NG′=NM时,设OA交G′C′于L.
∵∠NG′M=∠NMG′=75°,
∴∠MNG′=∠CAO=30°,
∴AL∥NG′,
∴∠OLG′=∠MG'N=75°,
∴∠AOG′=180°-75°-45°=60°,
∴旋转角为60°.
如图6中,当G′M=G′N时,
∵∠MG′N=180°-75°=105°,
∴∠NMG′=(180°-105°)=37.5°,
∴∠AOC′=360°-150°-135°-37.5°=37.5°,
∴∠AOG′=90°+37.5°=127.5°
∴旋转角为127.5°.
综上所述,满足条件的旋转角α为15°或37.5°或60°或127.5°.
【题目】蔬菜基地为选出适应市场需求的西红柿秧苗,在条件基本相同的情况下,将甲、乙两个品种的西红柿秧苗各500株种植在同一个大棚.对市场最为关注的产量进行了抽样调查,随机从甲、乙两个品种的西红柿秧苗中各收集了50株秧苗上的挂果数(西红柿的个数),并对数据(个数)进行整理、描述和分析,下面给出了部分信息.
a. 甲品种挂果数频数分布直方图(数据分成6组:25≤x<35,35≤x<45,45≤x<55,55≤x<65,65≤x<75,75≤x<85).
b. 甲品种挂果数在45≤x<55这一组的是:
45,45,46,47,47,49,49,49,49,50,50,51,51,54
c. 甲、乙品种挂果数的平均数、中位数、众数如下:
品种 | 平均数 | 中位数 | 众数 | 方差 |
甲 | 49.4 | m | 49 | 1944.2 |
乙 | 48.6 | 48.5 | 47 | 3047 |
根据以上信息,回答下列问题:
(1)表中m= ;
(2)试估计甲品种挂果数超过49个的西红柿秧苗的数量;
(3)可以推断出 品种的西红柿秧苗更适应市场需求,理由为 (至少从两个不同的角度说明推断的合理性).
【题目】某校兴趣小组就“最想去的漳州5个最美乡村”随机调查了本校部分学生. 要求每位同学选择且只能选择一个最想去的最美乡村. 下面是根据调查结果绘制出的尚不完整统计表和统计图,其中x、y是满足x<y的正整数.
最美乡村意向统计表
最美乡村 | 人数 |
A:龙海埭美村 | 10 |
B:华安官畬村 | 11 |
C:长泰山重村 | 4x |
D:南靖塔下村 | 9 |
E:东山澳角村 | 3y |
最美乡村意向扇形统计图
根据以上信息,解答下列问题:
(1)求x、y的值;
(2)若该校有1200名学生,请估计“最想去华安官畬村”的学生人数.