题目内容
【题目】如图,在△ABC中,∠ABC和∠ACB的平分线交于点O,过O点作EF∥BC,交AB于E,交AC于F.
(1)判断△BEO的形状,并说明理由.
(2)若AB=5cm,AC=4cm,求△AEF的周长.
【答案】(1)△BEO是等腰三角形,理由见解析;(2)9cm
【解析】试题分析:(1)根据角平分线的性质,可得∠EBO=∠CBO,根据平行线的性质,可得∠EOB=∠CBO,根据等腰三角形的判定即可得到结论;
(2)根据角平分线的性质,可得∠EBO与CBO,∠FOC与∠FCO的关系,根据平行线的性质,可得∠EOB与∠CBO,∠FOC与∠BCO的关系,根据等腰三角形的判定,可得BE与EO,CF与FO的关系,根据线段的和差,可得答案.
试题解析:(1)△BEO是等腰三角形,理由如下:
∵EF∥BC
∴∠OBC=∠EOB
∵BO是∠ABC的平分线
∴∠OBC=∠OBE
∴∠OBE=∠EOB
∴△BEO是等腰三角形;
(2)由(1)知:△BEO是等腰三角形 ∴EB=EO
同理可证:△CFO是等腰三角形 ∴FC=FO
∴△AEF的周长=AE+EF+ AF
= AE +EO+OF+AF
= AE +EB+CF+AF
=AB+AC
=5+4
=9
即△AEF的周长为9cm.
练习册系列答案
相关题目