题目内容

【题目】某校七年级准备购买一批笔记本奖励优秀学生,在购买时发现,每本笔记本可以打九折,用360元钱购买的笔记本,打折后购买的数量比打折前多10本.

1)求打折前每本笔记本的售价是多少元?

2)由于考虑学生的需求不同,学校决定购买笔记本和笔袋共90件,笔袋每个原售价为6元,两种物品都打九折,若购买总金额不低于360元,且不超过365元,问有哪几种购买方案?

【答案】解:(1)设打折前售价为x,则打折后售价为0.9x

由题意得,

解得:x=4

经检验:x=4是原方程的根.

答:打折前每本笔记本的售价为4元.

2)设购买笔记本y件,则购买笔袋(90﹣y)件,

由题意得,,解得:≤y≤70

∵y为正整数,∴y可取686970

故有三种购买方案:

方案一:购买笔记本68本,购买笔袋22个;

方案二:购买笔记本69本,购买笔袋21个;

方案三:购买笔记本70本,购买笔袋20个.

【解析】

试题(1)设打折前售价为x,则打折后售价为0.9x,表示出打折前购买的数量及打折后购买的数量,再由打折后购买的数量比打折前多10本,可得出方程,解出即可.

2)设购买笔记本y件,则购买笔袋(90﹣y)件,根据购买总金额不低于360元,且不超过365元,可得出不等式组,解出即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网