题目内容
(1)写出图中三对相似三角形(注意:不得添加字母和线);
(2)请在你所找出的相似三角形中选取一对,说明它们相似的理由.
分析:若∠BDE+∠BCE=180°则点B,C,E,D四点在同一个圆上,∠ECF=∠BDE,所以可知△ADE∽△ACB,△ECF∽△BDF,△FDC∽△FBE等.
解答:解:(1)△ADE∽△ACB,△ECF∽△BDF,△FDC∽△FBE.
(2)∵∠BDE+∠BCE=180°,∠ECF+∠BCE=180°,
∴∠ECF=∠BDE.
又∵∠F=∠F,
∴△ECF∽△BDF.
(2)∵∠BDE+∠BCE=180°,∠ECF+∠BCE=180°,
∴∠ECF=∠BDE.
又∵∠F=∠F,
∴△ECF∽△BDF.
点评:熟悉圆内接四边形的判定:对角互补的四边形是圆内接四边形.会利用等量代换找到相等的角,运用相似三角形的判定定理进行判定.
练习册系列答案
相关题目