题目内容

如图1,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为2,若△AFG绕点旋转,AF、AG与边BC的交点分别为点D、E(点D不与点B重合,点E不与点C重合).
(1)请在图1中找出两对相似而不全等的三角形,并选择其中一对进行证明;
(2)△ABC的斜边BC所在的直线为x轴,BC边上的高所在的直线为y轴,建立平面直角坐标系(如图2).在边BC上找一点D使BD=CE,求出点D的坐标,并通过计算验证BD2+CE2=DE2
(3)在旋转过程中,(2)中的等量关系BD2+CE2=DE2是否始终成立?若成立请证明你的结论;若不成立,请说明理由.
精英家教网
分析:(1)易得∠DAE=∠B=∠C=45°,那么可得∠BAE=ADC,则△BAE∽△CDA,同理可得△ABE∽△DCA;
(2)由BD=CE得BE=CD,那么可得△ABE≌△ACD,则AD=AE,加上(1)中的相似,可得CD=AB=
2
,由OC=1得到点D的坐标,进而表示出所求的代数式.
(3)可旋转一特殊角的度数,求解,得到一般结论.
解答:精英家教网解:(1)△ABE∽△DAE,△ABE∽△DCA.
∵∠BAE=∠BAD+45°,∠CDA=∠BAD+45°,
∴∠BAE=∠CDA.
又∠B=∠C=45°,
∴△ABE∽△DCA.

(2)∵BD=CE,
∴BE=CD.
∵AB=AC,∠ABC=∠ACB=45°,
∴△ABE≌△ACD.
∴AD=AE.
∵△BAE∽△CDA,
∴CD=AB=
2
,易得CO=1.
∴OD=
2
-1,那么点D的坐标为(1-
2
,0).
∵BD=2-
2
,CE=2-
2
,DE=2-2BD=2
2
-2,
∴BD2+CE2=DE2

(3)成立.
证明:将△ACE绕点A顺时针旋转90°至△ABH的位置,则CE=HB,AE=AH,
∠ABH=∠C=45°,旋转角∠EAH=90°.
连接HD,在△EAD和△HAD中,
∵AE=AH,∠HAD=∠EAH-∠FAG=45°=∠EAD,AD=AD,
∴△EAD≌△HAD.
∴DH=DE.
又∠HBD=∠ABH+∠ABD=90°,
∴BD2+CE2=DH2即BD2+CE2=DE2
点评:两角对应相等,两三角形相似;注意使用前面得到相似的条件;可用两个特殊结论得到相应的一般的结论.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网