题目内容
【题目】我们知道:有一内角为直角的三角形叫做直角三角形.类似地,我们定义:有一内角为45°的三角形叫做半直角三角形.如图,在平面直角坐标系中,O为原点,A(4,0),B(﹣4,0),D是y轴上的一个动点,∠ADC=90°(A、D、C按顺时针方向排列),BC与经过A、B、D三点的⊙M交于点E,DE平分∠ADC,连结AE,BD.显然△DCE、△DEF、△DAE是半直角三角形.
(1)求证:△ABC是半直角三角形;
(2)求证:∠DEC=∠DEA;
(3)若点D的坐标为(0,8),求AE的长.
【答案】(1)见解析;(2)见解析;(3)
【解析】
(1)先求得∠ADE=45°,由同弧所对的圆周角可知:∠ABE=∠ADE=45°,根据定义得:△ABC是半直角三角形;
(2)根据垂直平分线的性质得:AD=BD,由等角对等边得:∠DAB=∠DBA,由D、B、A、E四点共圆,
则∠DBA+∠DEA=180°,可得结论;
(3)设⊙M的半径为r,根据勾股定理列方程为:(8-r)2+42=r2,可得⊙M 的半径为5,由同弧所对的圆心角和圆周角的关系可得∠EMA=2∠ABE=90°,根据勾股定理可得结论;
(1)∵∠ADC=90°,DE平分∠ADC,
∴∠ADE=45°,
∵∠ABE=∠ADE=45°,
∴△ABC是半直角三角形
(2)∵OM⊥AB,OA=OB,
∴AD=BD,
∴∠DAB=∠DBA,
∵∠DEB=∠DAB,
∴∠DBA=∠DEB,
∵D、B、A、E四点共圆,
∴∠DBA+∠DEA=180°,
∵∠DEB+∠DEC=180°,
∴∠DEA=∠DEC
(3)如图1,连接AM,ME,
设⊙M的半径为r,
∵点D的坐标为(0,8),
∴OM=8﹣r,
由OM2+OA2=MA2得:(8﹣r)2+42=r2,
解得r=5,
∴⊙M 的半径为5
∵∠ABE=45°
∴∠EMA=2∠ABE=90°,
∴EA2=MA2+ME2=52+52=50,
∴.
【题目】1995年联合国教科文组织把每年4月23日确定为“世界读书日”.某中学为了解全校1000名学生平均每天阅读课外书报的时间,随机调查了该校50名学生一周内平均每天阅读课外书报的时间,结果如下表:
时间(分) | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 |
人 数 | 8 | 12 | 7 | 5 | 4 | 3 | 4 | 2 | 3 | 2 |
根据上述信息完成下列各题:
(1)在统计表(上表)中,众数是 分,中位数是 分;
(2)估计该学校平均每天阅读课外书报的时间不少于35分钟的学生大约 人;
小明同学根据上述信息制作了如下频数分布表和频数分布直方图,请你完成下列问题:
(3)频数分布表中 , ;
(4)补全频数分布直方图.
【题目】如图,P是半圆O中所对弦AB上一动点,过点P作PM⊥AB交于点M,作射线PN交于点N,使得∠NPB=45°,连接MN.已知AB=6cm,设A,P两点间的距离为xcm,M,N两点间的距离为ycm.(当点P与点A重合时,点M也与点A重合,当点P与点B重合时,y的值为0)
小超根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.
下面是小超的探究过程,请补充完整:
(1)按照下表中自变量x的值进行取点、画图、测量,得到了y与x的几组对应值;
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y/cm | 4.2 | 2.9 | 2.6 | 2.0 | 1.6 | 0 |
(说明:补全表格时相关数值保留一位小数)
(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(3)结合画出的函数图象,解决问题:当MN=2AP时,AP的长度约为 cm.