题目内容
【题目】如图1,抛物线y=x2﹣2x+k与x轴交于A、B两点,与y轴交于点C(0,﹣3).[图2、图3为解答备用图]
(1)k= ,点A的坐标为 ,点B的坐标为 ;
(2)设抛物线y=x2﹣2x+k的顶点为M,求四边形ABMC的面积;
(3)在x轴下方的抛物线上是否存在一点D,使四边形ABDC的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由;
(4)在抛物线y=x2﹣2x+k上求点Q,使△BCQ是以BC为直角边的直角三角形.
【答案】(1)﹣3,(﹣1,0),(3,0);(2)9;
(3)存在点D(,),使四边形ABDC的面积最大为.
(4)在抛物线上存在点Q1(﹣2,5)、Q2(1,﹣4),使△BCQ1、△BCQ2是以BC为直角边的直角三角形.
【解析】
试题分析:(1)把C(0,﹣3)代入抛物线解析式可得k值,令y=0,可得A,B两点的横坐标;
(2)过M点作x轴的垂线,把四边形ABMC分割成两个直角三角形和一个直角梯形,求它们的面积和;
(3)设D(m,m2﹣2m﹣3),连接OD,把四边形ABDC的面积分成△AOC,△DOC,△DOB的面积和,求表达式的最大值;(4)有两种可能:B为直角顶点、C为直角顶点,要充分认识△OBC的特殊性,是等腰直角三角形,可以通过解直角三角形求出相关线段的长度.
解:(1)把C(0,﹣3)代入抛物线解析式y=x2﹣2x+k中得k=﹣3
∴y=x2﹣2x﹣3,
令y=0,
即x2﹣2x﹣3=0,
解得x1=﹣1,x2=3.
∴A(﹣1,0),B(3,0).
(2)∵y=x2﹣2x﹣3=(x﹣1)2﹣4,
∴抛物线的顶点为M(1,﹣4),连接OM.
则△AOC的面积=,△MOC的面积=,
△MOB的面积=6,
∴四边形ABMC的面积=△AOC的面积+△MOC的面积+△MOB的面积=9.
说明:也可过点M作抛物线的对称轴,将四边形ABMC的面
积转化为求1个梯形与2个直角三角形面积的和.
(3)如图(2),设D(m,m2﹣2m﹣3),连接OD.
则0<m<3,m2﹣2m﹣3<0
且△AOC的面积=,△DOC的面积=m,
△DOB的面积=﹣(m2﹣2m﹣3),
∴四边形ABDC的面积=△AOC的面积+△DOC的面积+△DOB的面积
=﹣m2+m+6
=﹣(m﹣)2+.
∴存在点D(,),使四边形ABDC的面积最大为.
(4)有两种情况:
如图(3),过点B作BQ1⊥BC,交抛物线于点Q1、交y轴于点E,连接Q1C.
∵∠CBO=45°,
∴∠EBO=45°,BO=OE=3.
∴点E的坐标为(0,3).
∴直线BE的解析式为y=﹣x+3.
由
解得
∴点Q1的坐标为(﹣2,5).
如图(4),过点C作CF⊥CB,交抛物线于点Q2、交x轴于点F,连接BQ2.
∵∠CBO=45°,
∴∠CFB=45°,OF=OC=3.
∴点F的坐标为(﹣3,0).
∴直线CF的解析式为y=﹣x﹣3.
由
解得
∴点Q2的坐标为(1,﹣4).
综上,在抛物线上存在点Q1(﹣2,5)、Q2(1,﹣4),使△BCQ1、△BCQ2是以BC为直角边的直角三角形.
说明:如图(4),点Q2即抛物线顶点M,直接证明△BCM为直角三角形同样可以.