题目内容
【题目】已知,如图1,抛物线y=ax2+bx+3与x轴交于点B、C,与y轴交于点A,且AO=CO,BC=4.
(1)求抛物线解析式;
(2)如图2,点P是抛物线第一象限上一点,连接PB交y轴于点Q,设点P的横坐标为t,线段OQ长为d,求d与t之间的函数关系式;
(3)在(2)的条件下,过点Q作直线l⊥y轴,在l上取一点M(点M在第二象限),连接AM,使AM=PQ,连接CP并延长CP交y轴于点K,过点P作PN⊥l于点N,连接KN、CN、CM.若∠MCN+∠NKQ=45°时,求t值.
【答案】(1)y=﹣x2+2x+3(2)d=﹣t+3(0<t<3)(3)
【解析】试题分析:(1)先令x=0代入抛物线的解析式中求得与y轴交点A的坐标,根据OA=OC可得C的坐标,从而得B的坐标,利用待定系数法求抛物线解析式;
(2)如图2,设P(t,-t2+2t+3)(0<t<3),证明△BOQ∽△BGP,列比例式可得结论;
(3)如图3,作辅助线,构建全等三角形和等腰直角三角形,先得QN=OG=AQ=t,则△AQN是等腰直角三角形,得AN=t,由PG∥OK,得,,求得AK=3t,证明△NGC是等腰直角三角形,及△AKN∽△NMC,则,代入可得t的值,并根据(2)中的点P只在第一象限进行取舍.
解:(1)如图1,当x=0时,y=3,
∴A(0,3),
∴OA=OC=3,
∵BC=4,
∴OB=1,
∴B(﹣1,0),C(3,0),
把B(﹣1,0),C(3,0)代入抛物线y=ax2+bx+3中得:,
解得:,
∴抛物线的解析式为:y=﹣x2+2x+3;
(2)如图2,设P(t,﹣t2+2t+3)(0<t<3),
过P作PG⊥x轴于G,
∵OQ∥PG,
∴△BOQ∽△BGP,
∴,
∴,
∴d==﹣t+3(0<t<3);
(3)如图3,连接AN,延长PN交x轴于G,
由(2)知:OQ=3﹣t,OA=3,
∴AQ=OA﹣OQ=3﹣(3﹣t)=t,
∴QN=OG=AQ=t,
∴△AQN是等腰直角三角形,
∴∠QAN=45°,AN=t,
∵PG∥OK,
∴,
∴,
OK=3t+3,
AK=3t,
∵∠QAN=∠NKQ+∠ANK,
∴∠NKQ+∠ANK=45°,
∵∠MCN+∠NKQ=45°,
∴∠ANK=∠MCN,
∵NG=CG=3﹣t,
∴△NGC是等腰直角三角形,
∴NC=(3﹣t),∠GNC=45°,
∴∠CNH=∠NCM+∠NMC=45°,
∴∠NKQ=∠NMC,
∴△AKN∽△NMC,
∴,
∵AQ=QN=t,AM=PQ,
∴Rt△AQM≌△Rt△QNP(HL),
∴MQ=PN=﹣t2+2t+3﹣(3﹣t)=﹣t2+3t,
∴,
t2﹣7t+9=0,
t1=>3,t2=,
∵0<t<3,
∴t1>3,不符合题意,舍去,
∴t=.