题目内容
【题目】如图,抛物线经过A(﹣1,0),B(5,0),C(0,- )三点.
(1)求抛物线的解析式;
(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;
(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.
【答案】
(1)
解:设抛物线的解析式为y=ax2+bx+c(a≠0),
∵A(﹣1,0),B(5,0),C(0,- )三点在抛物线上,
∴ ,
解得 .
∴抛物线的解析式为:y= x2﹣2x﹣
(2)
解:∵抛物线的解析式为:y= x2﹣2x﹣ ,
∴其对称轴为直线x=﹣ =﹣ =2,
连接BC,如图1所示,
∵B(5,0),C(0,﹣ ),
∴设直线BC的解析式为y=kx+b(k≠0),
∴ ,
解得 ,
∴直线BC的解析式为y= x﹣ ,
当x=2时,y=1﹣ =﹣ ,
∴P(2,﹣ )
(3)
解:存在.
如图2所示,
①当点N在x轴下方时,
∵抛物线的对称轴为直线x=2,C(0,﹣ ),
∴N1(4,﹣ );
②当点N在x轴上方时,
如图,过点N2作N2D⊥x轴于点D,
在△AN2D与△M2CO中,
∴△AN2D≌△M2CO(ASA),
∴N2D=OC= ,即N2点的纵坐标为 .
∴ x2﹣2x﹣ = ,
解得x=2+ 或x=2﹣ ,
∴N2(2+ , ),N3(2﹣ , ).
综上所述,符合条件的点N的坐标为(4,﹣ ),(2+ , )或(2﹣ , ).
【解析】(1)设抛物线的解析式为y=ax2+bx+c(a≠0),再把A(﹣1,0),B(5,0),C(0,- )三点代入求出a、b、c的值即可;(2)因为点A关于对称轴对称的点B的坐标为(5,0),连接BC交对称轴直线于点P,求出P点坐标即可;(3)分点N在x轴下方或上方两种情况进行讨论.