题目内容

【题目】已知a、b、c满足|a﹣ |+ +(c﹣4 2=0.
(1)求a、b、c的值;
(2)判断以a、b、c为边能否构成三角形?若能构成三角形,此三角形是什么形状?并求出三角形的面积;若不能,请说明理由.

【答案】
(1)解:∵a、b、c满足|a﹣ |+ +(c﹣4 2=0.

∴|a﹣ |=0, =0,(c﹣4 2=0.

解得:a= ,b=5,c=4


(2)解:)∵a= ,b=5,c=4

∴a+b= +5>4

∴以a、b、c为边能构成三角形,

∵a2+b2=( 2+52=32=(4 2=c2

∴此三角形是直角三角形,

∴S= =


【解析】(1)根据非负数的性质得到方程,解方程即可得到结果;(2)根据三角形的三边关系,勾股定理的逆定理判断即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网