题目内容
【题目】如图,在等边△ABC中,点D、E分别在BC、AC边上,且∠ADE=60°,AB=3,BD=1,则EC= .
【答案】
【解析】解:∵∠ADC=∠B+∠BAD,∠ADC=∠ADE+∠EDC,∠B=∠ADE=60°, ∴60°+∠CDE=60°+∠BAD,
∴∠CDE=∠BAD,
又∵∠B=∠C=60°,
∴△ABD∽△DCE,
∴ = ,即 = = ,
解得:EC= .
所以答案是: .
【考点精析】本题主要考查了等边三角形的性质和相似三角形的判定与性质的相关知识点,需要掌握等边三角形的三个角都相等并且每个角都是60°;相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方才能正确解答此题.
练习册系列答案
相关题目
【题目】在一个不透明的口袋里装有仅颜色不同的黑、白两种颜色的球20只,某学习小组做摸球实验.将球搅匀后从中随机摸出一个球,记下颜色,再把它放回袋中,不断重复,下表是活动进行中记下的一组数据
摸球的次数 | 100 | 150 | 200 | 500 | 800 | 1000 |
摸到白球的次数 | 58 | 96 | 116 | 295 | 484 | 601 |
摸到白球的频率 | 0.58 | 0.64 | 0.58 | 0.59 | 0.605 | 0.601 |
(1)请你估计,当n很大时,摸到白球的频率将会接近 (精确到0.1).
(2)假如你去摸一次,你摸到白球的概率是 ,摸到黑球的概率是 .
(3)试估算口袋中黑、白两种颜色的球有多少只.