题目内容

【题目】如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB边中点.操作:以PA、PC为邻边作平行四边形PADC,连续PM并延长到点E,使ME=PM,连接DE. 探究:

(1)请猜想与线段DE有关的三个结论;
(2)请你利用图2,图3选择不同位置的点P按上述方法操作;
(3)经历(2)之后,如果你认为你写的结论是正确的,请加以证明; 如果你认为你写的结论是错误的,请用图2或图3加以说明;
(注意:错误的结论,只要你用反例给予说明也得分)
(4)若将“Rt△ABC”改为“任意△ABC”,其他条件不变,利用图4操作,并写出与线段DE有关的结论(直接写答案).

【答案】
(1)解:DE∥BC,DE=BC,DE⊥AC
(2)解:如图4,如图5.


(3)解:方法一:

如图6,

连接BE,

∵PM=ME,AM=MB,∠PMA=∠EMB,

∴△PMA≌△EMB.

∵PA=BE,∠MPA=∠MEB,

∴PA∥BE.

∵平行四边形PADC,

∴PA∥DC,PA=DC.

∴BE∥DC,BE=DC,

∴四边形DEBC是平行四边形.

∴DE∥BC,DE=BC.

∵∠ACB=90°,

∴BC⊥AC,

∴DE⊥AC.

方法二:

如图7,连接BE,PB,AE,

∵PM=ME,AM=MB,

∴四边形PAEB是平行四边形.

∴PA∥BE,PA=BE,

余下部分同方法一:

方法三:

如图8,连接PD,交AC于N,连接MN,

∵平行四边形PADC,

∴AN=NC,PN=ND.

∵AM=BM,AN=NC,

∴MN∥BC,MN= BC.

又∵PN=ND,PM=ME,

∴MN∥DE,MN= DE.

∴DE∥BC,DE=BC.

∵∠ACB=90°,

∴BC⊥AC.

∴DE⊥AC.


(4)解:如图9,DE∥BC,DE=BC.


【解析】连接BE,根据边角边可证△PAM和△EBM全等,可得EB和PA既平行又相等,而PA和CD既平行且相等,所以DE和BC平行相等,又因为BC⊥AC,所以DE也和AC垂直.以下几种情况虽然图象有所变化,但是证明方法一致.
【考点精析】本题主要考查了平行四边形的性质的相关知识点,需要掌握平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网