题目内容

【题目】在平面直角坐标系中,将点P(2,)绕原点O顺时针旋转90°后得到点P′,则点P′的坐标是(  )

A. (-2, B. ,2) C. (2,- D. ,-2)

【答案】D

【解析】

如图,过P、P′两点分别作x轴,y轴的垂线,垂足为A、B,由旋转90°可知,△OPA≌△OP′B,则P′B=PA=,BO=OA=2,由此确定点P′的坐标.

如图,过P、P′两点分别作x轴,y轴的垂线,垂足为A、B,
∵线段OP绕点O顺时针旋转90°,
∴∠POP′=∠AOB=90°,
∴∠AOP=∠P′OB,且OP=OP′,∠PAO=∠P′BO=90°,
∴△OAP≌△OBP′,即P′B=PA=,BO=OA=2,
∴P′(,-2).

故选:D.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网