题目内容
【题目】如图,一次函数y=kx+b与反比例函数 的图象交于A(m,6),B(3,n)两点.
(1)求一次函数的解析式;
(2)根据图象直接写出 的x的取值范围;
(3)求△AOB的面积.
【答案】
(1)解:分别把A(m,6),B(3,n)代入 得6m=6,3n=6,
解得m=1,n=2,
所以A点坐标为(1,6),B点坐标为(3,2),
分别把A(1,6),B(3,2)代入y=kx+b得 ,
解得 ,
所以一次函数解析式为y=﹣2x+8
(2)解:当0<x<1或x>3时,
(3)解:如图,当x=0时,y=﹣2x+8=8,则C点坐标为(0,8),
当y=0时,﹣2x+8=0,解得x=4,则D点坐标为(4,0),
所以S△AOB=S△COD﹣S△COA﹣S△BOD
= ×4×8﹣ ×8×1﹣ ×4×2
=8.
【解析】(1)先根据反比例函数图象上点的坐标特征得到6m=6,3n=6,解得m=1,n=2,这样得到A点坐标为(1,6),B点坐标为(3,2),然后利用待定系数求一次函数的解析式;(2)观察函数图象找出反比例函数图象都在一次函数图象上方时x的取值范围;(3)先确定一次函数图象与坐标轴的交点坐标,然后利用S△AOB=S△COD﹣S△COA﹣S△BOD进行计算.
【考点精析】解答此题的关键在于理解三角形的面积的相关知识,掌握三角形的面积=1/2×底×高.
练习册系列答案
相关题目