题目内容
【题目】课间,小刚拿着老师的等腰直角三角板玩,一不小心掉到垂直地面的两个木块之间,如图所示:
(1)求证:△ADC≌△CEB;
(2)若测得AD=15cm,BE=10cm,求两个木块之间的距离DE的长.
【答案】(1)见解析;(2)25;
【解析】
(1)根据题意可得AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,进而得到∠ADC=∠CEB=90°,再根据等角的余角相等可得∠BCE=∠DAC,再证明△ADC≌△CEB即可.
(2)利用(1)中全等三角形的性质进行解答.
(1)由题意,得AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,
∴∠ADC=∠CEB=90°,∠ACD+∠BCE=90°.
∴∠ACD+∠CAD=90°.
∴∠CAD=∠BCE,
又∵AC=CB,
∴△ADC≌△CEB(AAS);
(2)∵△ADC≌△CEB,
∴CD=BE,AD=CE,
∵DE=CD+CE,
∴DE=BE+AD=10+15=25(cm).
∴两墙之间的距离DE的长为25cm.
练习册系列答案
相关题目