题目内容
【题目】如图,已知⊙O的直径AB=12cm,AC是⊙O的弦,过点C作⊙O的切线交BA的延长线于点P,连接BC.
(1)求证:∠PCA=∠B
(2)已知∠P=40°,点Q在优弧ABC上,从点A开始逆时针运动到点C停止(点Q与点C不重合),当△ABQ与△ABC的面积相等时,求动点Q所经过的弧长。
【答案】
(1)
证明:连接OC,
∵PC是⊙O的切线,
∴∠PCO=90°,
∴∠1+∠PCA=90°,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠2+∠B=90°,
∵OC=OA,
∴∠1=∠2,
∴∠PCA=∠B;
(2)
解:∵∠P=40°,
∴∠AOC=50°,
∵AB=12,
∴AO=6,
当∠AOQ=∠AOC=50°时,△ABQ与△ABC的面积相等,
∴点Q所经过的弧长==,
当∠BOQ=∠AOC=50°时,即∠AOQ=130°时,△ABQ与△ABC的面积相等,
∴点Q所经过的弧长==,
当∠BOQ=50°时,即∠AOQ=230°时,△ABQ与△ABC的面积相等,
∴点Q所经过的弧长==,
∴当△ABQ与△ABC的面积相等时,动点Q所经过的弧长为或或.
【解析】(1)证明:连接OC,由PC是⊙O的切线,得到∠1+∠PCA=90°,由AB是⊙O的直径,得到∠2+∠B=90°,于是得到结论;
(2)当∠AOQ=∠AOC=50°时,△ABQ与△ABC的面积相等,求得点Q所经过的弧长==,当∠BOQ=∠AOC=50°时,即∠AOQ=130°时,△ABQ与△ABC的面积相等,求得点Q所经过的弧长==,当∠BOQ=50°时,即∠AOQ=230°时,△ABQ与△ABC的面积相等,
∴点Q所经过的弧长==
此题考查了圆的应用,包括切线的性质和弧长的计算。注意分情况讨论,熟练掌握弧长公式。
【题目】在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.
(1)先从袋子中取出m(m>1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A,请完成下列表格:
事件A | 必然事件 | 随机事件 |
m的值 |
(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个黑球的概率等于,求m的值.