题目内容

【题目】如图1,在菱形ABCD中,AB=6 ,tan∠ABC=2,点E从点D出发,以每秒1个单位长度的速度沿着射线DA的方向匀速运动,设运动时间为t(秒),将线段CE绕点C顺时针旋转一个角α(α=∠BCD),得到对应线段CF.

(1)求证:BE=DF;
(2)当t=秒时,DF的长度有最小值,最小值等于
(3)如图2,连接BD、EF、BD交EC、EF于点P、Q,当t为何值时,△EPQ是直角三角形?
(4)如图3,将线段CD绕点C顺时针旋转一个角α(α=∠BCD),得到对应线段CG.在点E的运动过程中,当它的对应点F位于直线AD上方时,直接写出点F到直线AD的距离y关于时间t的函数表达式.

【答案】
(1)

解:∵∠ECF=∠BCD,即∠BCE+∠DCE=∠DCF+∠DCE,

∴∠DCF=∠BCE,

∵四边形ABCD是菱形,

∴DC=BC,

在△DCF和△BCE中,

∴△DCF≌△BCE(SAS),

∴DF=BE


(2)6 +6;12
(3)

解:∵CE=CF,

∴∠CEQ<90°,

①当∠EQP=90°时,如图2①,

∵∠ECF=∠BCD,BC=DC,EC=FC,

∴∠CBD=∠CEF,

∵∠BPC=∠EPQ,

∴∠BCP=∠EQP=90°,

∵AB=CD=6 ,tan∠ABC=tan∠ADC=2,

∴DE=6,

∴t=6秒;

②当∠EPQ=90°时,如图2②,

∵菱形ABCD的对角线AC⊥BD,

∴EC与AC重合,

∴DE=6

∴t=6


(4)

解:y= t﹣12﹣

如图3,连接GF分别交直线AD、BC于点M、N,过点F作FH⊥AD于点H,

由(1)知∠1=∠2,

又∵∠1+∠DCE=∠2+∠GCF,

∴∠DCE=∠GCF,

在△DCE和△GCF中,

∴△DCE≌△GCF(SAS),

∴∠3=∠4,

∵∠1=∠3,∠1=∠2,

∴∠2=∠4,

∴GF∥CD,

又∵AH∥BN,

∴四边形CDMN是平行四边形,

∴MN=CD=6

∵∠BCD=∠DCG,

∴∠CGN=∠DCN=∠CNG,

∴CN=CG=CD=6

∵tan∠ABC=tan∠CGN=2,

∴GN=12,

∴GM=6 +12,

∵GF=DE=t,

∴FM=t﹣6 ﹣12,

∵tan∠FMH=tan∠ABC=2,

∴FH= (t﹣6 ﹣12),

即y= t﹣12﹣


【解析】解:(2)如图1,

当点E运动至点E′时,DF=BE′,此时DF最小,
在Rt△ABE′中,AB=6 ,tan∠ABC=tan∠BAE′=2,
∴设AE′=x,则BE′=2x,
∴AB= x=6
则AE′=6
∴DE′=6 +6,DF=BE′=12,
所以答案是:6 +6,12;
【考点精析】利用菱形的性质对题目进行判断即可得到答案,需要熟知菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形被两条对角线分成四个全等的直角三角形;菱形的面积等于两条对角线长的积的一半.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网