题目内容
请阅读下列材料:
已知:如图(1)在Rt△ABC中,∠BAC=90°,AB = AC,点D、E分别为线段BC上两动点,若∠DAE=45°.探究线段BD、DE、EC三条线段之间的数量关系.小明的思路是:把△AEC绕点A顺时针旋转90°,得到△ABE′,连结E′D,使问题得到解决.请你参考小明的思路探究并解决下列问题:
(1)猜想BD、DE、EC三条线段之间存在的数量关系式,并对你的猜想给予证明;
(2)当动点E在线段BC上,动点D运动在线段CB延长线上时,如图(2),其它条件 不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明.
图(2)
(1) DE2=BD2+EC2
证明:根据△AEC绕点A顺时
针旋转90°得到△ABE’
∴ △AEC≌△ABE’
∴ BE’=EC, A E’=AE
∠C=∠AB E’ , ∠EAC=∠E’AB
在Rt△ABC中
∵ AB=AC
∴ ∠ABC=∠ACB=45°
∴ ∠ABC+∠AB E’=90°
即 ∠E’BD=90°
∴ E’B2+BD2= E’D2
又∵ ∠DAE=45°
∴ ∠BAD+∠EAC=45°
∴ ∠E’AB+∠BAD=45°
即 ∠E’AD=45°
∴ △A E’D≌△AED
∴ DE=D E’
∴ DE2=BD2+EC2
(2)关系式DE2=BD2+EC2仍然成立
证明:将△ADB沿直线AD对折,
得△AFD,连FE
∴ △AFD≌△ABD
∴AF=AB,FD=DB
∠FAD=∠BAD,∠AFD=∠ABD
又∵AB=AC,∴AF=AC
∵∠FAE=∠FAD+∠DAE=∠FAD+45°
∠EAC=∠BAC-∠BAE=90°-(∠DAE-∠DAB)= 45°+∠DAB
∴ ∠FAE=∠EAC
又∵ AE=AE
∴△AFE≌△ACE
∴ FE=EC , ∠AFE=∠ACE=45°
∠AFD=∠ABD=180°-∠ABC=135°
∴ ∠DFE=∠AFD-∠AFE=135°-45°=90°
∴在Rt△DFE中
DF2+FE2=DE2
即DE2=BD2+EC2