题目内容
【题目】对于a、b定义两种新运算“*”和“⊕”:a*b=a+kb,a⊕b=ka+b(其中k为常数,且k≠0).若平面直角坐标系xOy中的点P(a,b),有点P的坐标为(a*b,a⊕b)与之相对应,则称点P为点P的“k衍生点”
例如:P(1,4)的“2衍生点”为P′(l+2×4,2×1+4),即P′(9,6).
(1)点P(﹣1,6)的“2衍生点”P′的坐标为 .
(2)若点P的“3衍生点”P′的坐标为(5,7),求点P的坐标.
【答案】(1)(11,4);(2)(2,1).
【解析】
(1)直接利用新定义进而分析得出答案;
(2)直接利用新定义结合二元一次方程组的解法得出答案.
(1)由题意可得,点P(﹣1,6)的“2衍生点”P′的坐标为:[﹣1+2×6,2×(﹣1)+6],即(11,4);
故答案为:(11,4);
(2)设点P的坐标为:(a,b),
由题意可得:,
解得:,
∴点P的坐标为:(2,1).
【题目】某中学举行“校园好声音”歌手大赛,初、高中部根据初赛成绩,各选出名选手组成初中代表队和高中代表队参加学校决赛.每个队名选手的决赛成绩如图所示:
填表:
平均数(分) | 中位数(分) | 众数(分) | |
初中代表队 | |||
高中代表队 |
结合两队决赛成绩的平均数和中位数,分析哪个代表队的成绩较好;
计算两队决赛成绩的方差,并判断哪个代表队的成绩较为稳定.
【题目】珠海市某中学开展主题为“我爱阅读”的专题调查活动,为了解学校1200名学生一年内阅读书籍量,随机抽取部分学生进行统计,绘制成如下尚未完成的频数分布表和频数分布直方图.请根据图表,解答下面的问题:
分组 | 频数 | 频率 |
0≤x<5 | 4 | 0.08 |
5≤x<10 | 14 | 0.28 |
10≤x<15 | 16 | a |
15≤x<20 | b | c |
20≤x<25 | 10 | 0.2 |
合计 | d | 1.00 |
(1)a= ,b= c= .
(2)补全频数分布直方图;
(3)根据该样本,估计该校学生阅读书籍数量在15本或15本以上的人数.
【题目】父亲告诉小明:“距离地面越高,温度越低”,并给小明出示了下面的表格:
距离地面高度(千米)h | 0 | 1 | 2 | 3 | 4 | 5 |
温度(℃)t | 20 | 14 | 8 | 2 | ﹣4 | ﹣10 |
根据表中,父亲还给小明出了下面几个问题,请你帮助小明回答下列问题:
(1)表中自变量是 ;因变量是 ;当地面上(即h=0时)时,温度是 ℃.
(2)如果用h表示距离地面的高度,用t表示温度,请写出满足t与h关系的式子.
(3)计算出距离地面6千米的高空温度是多少?