题目内容

【题目】如图,某船以每小时36海里的速度向正东方向航行,在点A测得某岛C在北偏东60°方向上,航行半小时后到达点B测得该岛在北偏东30°方向上,已知该岛周围16海里内有暗礁.

(1)说明点B是否在暗礁区域内;
(2)若继续向东航行有无触礁的危险?请说明理由.

【答案】
(1)

解:作CD⊥AB于点D,

设BC为x,

在Rt△BCD中∠CBD=60°,

在Rt△ACD中∠CAD=30°

∴x=18.

∴B点不在暗礁区域内


(2)

解:∵

∴若继续向东航行船有触礁的危险.


【解析】(1)求点B是否在暗礁区域内,其实就是求CB的距离是否大于16,如果大于则不在暗礁区域内,反之则在.可通过构造直角三角形来求CB的长,作CD⊥AB于点D,CD是直角三角形ACD和CBD的公共直角边,可先求出CD的长,再求出CB的长;(2)本题实际上是问,C到AB的距离即CD是否大于16,如果大于则无触礁危险,反之则有,CD的值,(1)已经求出,只要进行比较即可.
【考点精析】关于本题考查的关于方向角问题,需要了解指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网