题目内容
【题目】小慧同学根据学习函数的经验,对函数y=|x﹣1|的图象与性质进行了探究.下面是小慧的探究过程,请补充完成:
(1)函数y=|x﹣1|的自变量x的取值范围是 .
(2)列表,找出y与x的几组对应值.
x | … | ﹣1 | 0 | 1 | 2 | 3 | … |
y | … | 2 | b | 0 | 1 | 2 | … |
其中,b= .
(3)在所给的平面直角坐标系xoy中,描出以上表中各对对应值为坐标的点,并画出该函数的图象;
(4)请根据你画出的函数图象,完成:当x=﹣5时.y= .当2012≤|y|≤2019时,x的取值范围是 .
【答案】(1)任意实数;(2)b=1;(3)见解析;(4)y=6;﹣2018≤x≤﹣2011或2013≤x≤2020
【解析】
(1)根据一次函数的性质即可得出结论;
(2)把x=0代入函数解析式,求出y的值即可;
(3)在坐标系内描出各点,再顺次连接即可;
(4)根据函数图象即可得出结论.
(1)∵x无论为何值,函数均有意义,
∴x为任意实数.
故答案为:任意实数;
(2)∵当x=0时,y=|0﹣1|=1,
∴b=1.
故答案为:1;
(3)如图所示:
(4)当x=﹣5时.y=|﹣5﹣1|=6.
当y=2012时,|x﹣1|=2012,解得x=2013或x=﹣2011,
当y=2019时,|x﹣1|=2019,解得x=2020或x=﹣2018,
由函数图象可知,当2012≤|y|≤2019时,x的取值范围是﹣2018≤x≤﹣2011或2013≤x≤2020,
练习册系列答案
相关题目