题目内容
(1)求证:△ADE∽△BDA
(2)如果BA=10,BC=12,BD=15,求BE的长.
分析:(1)根据AD2=BD•ED得出
=
,再根据∠ADE=∠BDA,即可证出△AED∽△BDA.
(2)根据△AED∽△BDA,得出∠AED=∠BAD,再通过证明△EBC∽△ABD,得出
=
,再把BA、BC、BD的值代入即可求出BE的长.
| AD |
| ED |
| BD |
| AD |
(2)根据△AED∽△BDA,得出∠AED=∠BAD,再通过证明△EBC∽△ABD,得出
| BC |
| BD |
| BE |
| BA |
解答:解:(1)证明:∵AD2=BD•ED,
∴
=
,
∵∠ADE=∠BDA,
∴△AED∽△BDA.
(2)∵△AED∽△BDA,
∴∠AED=∠BAD.
∵∠BEC=∠AED,
∴∠BEC=∠BAD.
∵BD平分∠ABC,即∠EBC=∠ABD,
∴△EBC∽△ABD.
∴
=
.
∵BA=10,BC=12,BD=15,
∴
=
,
∴BE=8.
∴
| AD |
| ED |
| BD |
| AD |
∵∠ADE=∠BDA,
∴△AED∽△BDA.
(2)∵△AED∽△BDA,
∴∠AED=∠BAD.
∵∠BEC=∠AED,
∴∠BEC=∠BAD.
∵BD平分∠ABC,即∠EBC=∠ABD,
∴△EBC∽△ABD.
∴
| BC |
| BD |
| BE |
| BA |
∵BA=10,BC=12,BD=15,
∴
| 12 |
| 15 |
| BE |
| 10 |
∴BE=8.
点评:此题考查了相似三角形的判定与性质;关键是综合利用三角形的判定与性质列出比例式求出线段的长.
练习册系列答案
相关题目